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Approximations to solitary waves on lattices: 11. Quasi- 
continuum methods for fast and slow waves 

Jonathan A D Mttis 
Department of Mathematics, Heriot-Wtt University, Edinburgh, EH14 4AS, UK 

Received 26 June 1992 

Abstract A number of highly accurate anaiylic approximations to solimy waves on 
lattices are detailed, and the results of numerical tesu presented. WO types of 
approximation are considered. The first set of approximations are generalizations of 
the continuum approximation, based amund various Pad6 expansions of the operator. 
These are convergent to the exact mlution in the Limit of wavespeed c - 1, or a 
dense lattice. We also consider way of mnstmcting approximations to fast solitaly 
waves from a continuum-type theory. The WO Qa are closely related. In both cases 
signi6cant improvements are made on existing approximations. A symplectie Hamiltonian 
integration scheme is used to perfom mmputer simulations A new method of measuring 
the accuracy of a predicted waveform is also used on new and old apprOximations alike, 
to mmpare the various methods considered. 

1. Introduction 

This paper is concerned with forming highly accurate analytic expressions for 
the size and shape of solitary waves on lattices with non-harmonic interactions. We 
consider mainly simple polynomial potentials, such as those generated when Taylor- 
expanding a general potential around an equilibrium pint .  In general these lattices 
appear to support solitary waves which will propagate without changing form, but 
these do not form mathematical solitons. There are 'exact' numerical solutions: 
in the sense that it is possible to generate numerical solutions to the equations 
which propagate with no discernible change in form, and leave behind no measurable 
radiation. On collision, these do leave behind a small amount of radiation and emerge 
with slightly reduced energy. Hence we are only concerned with predicting the shape 
of a solitary wave. In particular we will be interested in predicting its speed-height 
characteristics. The term soliton will be used in this looser sense. 

A typical lattice equation in one dimension is 

&t) = v'(+n+*(t)) - 2V'(+,(t)) + V'(+,-l(t)l. (1.1) 

where V(+) is a potential energy function; e.g. V ( 4 )  = @fia$3+$b+4. Since we 
are interested in travelling waves, we seek solutions of the form +,(t) = + ( n - c t )  G 
+( 2). Equation (1.1) then becomes the nonlinear differential-delay equation 

C 2 V ( Z )  = V ' ( + ( Z  t 1)) - 2Vf(4(Z)) t V'(+(Z - 1)) (1.2) 

0305470/mx)51193+17$07.50 @ 1993 IOP Publishing Ltd 1193 
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The aim of this paper is to develop methods for finding approximate solutions to 
equation such as this, i.e. finding appmximations to lattice solitons. These methods 
can then be used on more complex models. The results presented here can also be 
used to verify numerical simulations [I]. They can also be used to initialise numerical 
simulations, where it is often easier to start from an analytical approximation, than to 
numerically sum and/or iterate sequences to convergence. Our goal is to find highly 
accurate analytic approximations to properties of solitary waves. Such work has been 
carried out numerically by Eilbeck and Flesch [I]. Also some useful theory has been 
derived by Hochstrasser et a1 [Z] but this is too complicated to be used in analytic 
approximations, and their results must really be considered as numerical work. 

Our methods are based around Pad6 expansions. The notation (m,n) refers 
to the ratio of an mth degree polynomial by an nth degree polynomial. In some 
texts this is also written as P,". h well as the method detailed below, most results 
can be derived via equations related to the Boussinesq equation: this suffers from 
a dispersion relation which is negative for large wave numbers. It is not claimed 
that such PDES describe the time evolution of the lattice in some long wavelength 
approximation: we merely assert that a solitary wave will satisfy the appropriate 
travelling wave equation to some degree of accuracy. 

In the remainder of this section, the results of the exactly integrable lbda lattice 
are quoted, and a simple piece of asymptotics is derived. The lbda potential is 
important, since it shows that exact solitons can exist on lattices. It also gives us an 
easy way to check our methods, by carrying out our methods on a potential where 
the exact results are known. The asymptotics will be referred to, to support some of 
the assumptions made in deriving the approximate methods. 

In section two, we first quote the results already known, reviewing the work of 
Rytzanis, Pnevmatikos, Peyrard [3,4], and Rosenau [5,6]. We must also note the 
work of Druzhinin and Ostrovsky 171, and Hochstrasser et al [2]. in this subject area. 
Several new approximations are then derived, which extend this work. The section is 
purely concerned with the simplest lattice equation, that of a one-dimensional lattice 
with nonlinear nearest neighbour interactions. 

In section three the earlier work is generalised to a two-dimensional lattice- 
the Kadomtsev-Petviashvili lattice. This has a highly non-isotropic potential, and 
has already been studied by Duncan et al [SI. Alternative methods of generating 
approximate wave forms for a variety of wave speeds have also been found. These 
highly accurate approximations are not based on expanding about a solution which is 
accurate the in limit of very large or very small speeds; but on the structure of the 
equations of motion. Details will be published in a subsequent paper [9]. 

1.1. lbda lattice 

For comparison of the performance of differing continuum approximations, we shall 
use the Tbda Potential 

V(4) = a b - ' ( V ( - b + )  + bd - 1) (1.3) 

which is integrable [IO]. The solution of this is 
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where = Y ~ + ~  - y,. There is a one-parameter family of solutions, parametrised 
by K ,  and P = a s i n h n .  The sequence {&} forms a ldnk soliton, and {+n) a 
pulse; with peak height at nn = Pt, where = ( 2 / b )  logsech K < 0. The speed of 
such a pulse is c = P / K  = a s i n h ( n ) / n .  

1.2. A.ympto&x 

As a preliminary, we will consider a simple piece of asymptotics. Assuming a solitary 
wave exists, we want to lolow the form of its decay. We assume that for large 2,  + is 
small and so the equation we consider is a linearisation of (1.2) about 4 = 0 

2+“( z )  = +( 2 + 1) - 2+( 2) + +( 2 - 1). (1.5) 

This, being linear, has solutions of the form + ( z )  = exp(-Ar). Substituting this in, 
we can obtain the following equation for A; 

$CA = sinh;A. (1.6) 

This has solutions with X > 0 only if c > 1. It is already !mown that solitary waves 
exist only for c > 1, so we have found that solitary waves decay monotonically and 
exponentially. A similar result is easily obtained for the w lattice. 

2. One-dimensional lattice equation 

21. Standard continuum approximation 

From the singledimensional lattice equation (1.1) with a general quartic polynomial 
potential, V’(+) = + + a+* + b @ ,  the standard continuum approximation can be 
derived as in 131. This reduces the system of ODES to a WE, the Boussinesq equation, 
and then seek travelling wave solutions of this. The same results, however, can be 
arrived at in a different way, if we first assume that a travelling wave exists for the 
lattice equation (l.l), then write the differential delay equation (1.2) as an operator 
equation. We denote the derivative with respect to z by D 

cZD2+(z) = [4sinh2($D)]V’(+(z)) (2.1) 

using the fact that +(zrtl)  = +(z)~D~(t.)+$D2+f~D3++. . . = e*D+. Dividing 
the operator equation by Dz corresponds to integrating the equation twice with 
both constants of integration being zero. We do not need to impose any additional 
constraints on a solitary wave, since we already expect it to decay to zero exponentially 

The equation can now be written as cz+ = A(LJ)V‘(+). We can now form 
approximations by expanding A( D). This can be justified more rigorously by taking 
Fburier B a n s f o m  of equation (1.2), denoting V’(+(z)) as F ( z )  

as 121 + w. 

- czkz$(k)  = -4p(k)sin2 ik (2-2) 

or G$ = ,&(k)p. Now approximating ,&(k) before inverting the aansform, we 
obtain an equivalent approximation. 
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For the standard continuum approximation we expand A( D) as I + AD2,  where 
I is !he identity operator, to give 

cz+(z) = [I + k~ ' ] [+  t a+'+ b+331. (2.3) 

Now we w u m e  that + is small and slowly varying so that a product of + with its 
derivative is negligible. The effect of this is that the D2 operator only acts on the + 
term. The ODE 

(cz - I)+ - A+" - a+' - b+3 = 0. (2.4) 

is then easily obtained. 
The results of this process are summarized below: 

0 In general the speed-height relationship is $4; = 2V(+,) with 4, # 0. 
For the pure cubic potential, + ( z )  = + , s e c h 2 ( z d W ) ,  where 4, = 
(3/2u)(c2 - 1). 

0 For the pure quartic potential, $ ( z )  = + , s e c h ( 2 z d m ) ,  where 4: = 

0 For the Toda potential, c2 = (2u/bq4;)(e-6#o + b+, - 1). However to write it 
as +, = f(c) requires the solution of a aanscendental equation. The waveform 
cannot be found in simple form. 

22. (0,2) Pad6 continuum approximation 

If we use the (0,2) Pad6 approximation to the operator, as suggested by Rosenau 

(2/b)(cZ - 1). 

r5,q 

(2.5) A(D) N I + & D Z  - [I- E 1 0 2  ] -1 

then no further approximations are necessary to obtain explicit formulae. 
operator acts on the left-hand side of the equation 

The 

c2+(2)- A C 2 4 " ( 2 )  = V' (+(z ) )  (2.6) 

which is soluble in the case of pure cubic or pure quartic V (  .), giving similar results 
to the standard continuum approximation. The speed-height relationships are exactly 
the same; however the (0,2) Pad6 approximation produces wider solitaly waves. These 
are obtained by integrating the above, with the constant of integration being zero since 
at = 0 we also have 4' = 0. This equation can always be manipulated to give the 
solution in terms of an implicit integral. For the polynomial cases we are considering, 
explicit solutions are available. 

0 In general the speed-height relationship is $4; = 2V(@,)  with +, # 0. This 
gives the same speed-height relationships as above. 

0 The waveform in the cubic case is 
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The waveform in the quartic case is 

In the proceeding sections further approximations will be described which 
generalise this idea. They provide new, more accurate approximations to the form of 
the solitary wave, and improved speed-height characteristics. 

23. (ZO) Pad6 continuum approrimation 
The 6rst approximation to he generated is a more accurate form of the continuum 
approximation. A (50) Pad6 approximation is exactly the Same as a Thylor expansion 
to O( 0'). If we allow the D2 term to act on the full form of V'(4) and not just on 
the linear part, we obtain a second-order ODE 

&(.) = [ I  + &02lV'(4(.)) 
= V'(+(Z)) + &V"(4(Z))4"(.) + ~V"'(4(Z))4'(.,2 (2-7) 

which can still be integrated to first-order 

E = a (4(+))24'(z)2+ $V'(4(z))'- 2 V ' ( 4 ( ~ ) ) 4 ( ~ )  + c z V ( 4 ( ~ ) ) .  (2.8) 
For a solitary wave, from the asymptotics: 4 = 0 4' = 0, V = 0, V' = 0, hence 
E = 0. 'RI get a speed-height relationship we put 4' = 0.4" # 0, to obtain the 
following results; 

The general speed-height equation: cz[&V'(+,) - V(4")] = iV'(+,)2 
For a pure cubic potential, V ( 4 )  = + ia43 

1 Vli 

- y1 or = ,(2c2 1 - 3 + e m ) .  (29) 
c -  

3 + 4 4 ,  
For a pure quartic potential, V(4)  = &#? + 

And for the 'Ibda potential, just the one form is available 

ab(1- e-b+o)2 
2(1- - b+ue-b+a) 

CZ = 

since other equations are transcendental in nature. 

(2.11) 

The form of the solitary wave is somewhat harder to obtain. From equation (2.8) 
we find 

In the cases of cubic and quartic potentials, the integral can be calculated, but the 
solution can not be written in the explicit form 4 = 4 ( z ) ,  it has to be left as an 
implicit expression z = ~ ( 4 ) .  To avoid much tedious algebra, we shall simply quote 
the results, and explain how to use them in setting up initial conditions. 
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23.1. Cubic Potential: V ( 4 )  = &5' + Calculating the integral (2.12) 

(2.13) 1 2&z = 4tan-'(0) - - 

'lb solve these equations for a fixed z, we first note that (2.13) can be rearranged to 
form a simpler implicit equation 

0 = ~ t a n h ~ ~ ( * ~ ~ - z t a n - ' ~ 0 ) ) ~ .  (215) 

'lb start an iterative solution of this equation, we can use another approximation, 
cg. the (0,2) PadB approximation with 4" supplied by the speed-height relation 
generated by this method, 4 = q5usechz(nz), where 4" from equation (2.9), and 
n = ( l / c ) d m  from the (0,2) Pad6 approximation. This leads to an initial 
value of 0(") which can be calculated numerically from 

(2-16) 
@(U) = sinh(n.z) 

1/1+ ( P / a & )  msh2(nz) 

followed by a carefully chosen iteration method, making sure that convergence is 
guaranteed for all z. 

Once the iteration has converged, $ ( z )  can easily be found from 0. However 
d+/dz needs a little more work to find. We differentiate (2.13) with respect to z ,  to 
find (after some rearrangement) 

Note that 

(2.18) 

(2.19) 

and we can calculate all necessary quantities to initialise a solitary wave. 

2.3.2. Quarzicpfenriol: V ( 4 )  = $4' + 
table 2. Again calculating the integral in (2.12) 

Results for this potential are shown in 
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Note that the definitions of p and 0 are different to those used in the cubic case. A 
simpler implicit equation is 

If, as before, we use a form of the (0,2) Pad6 approximation to start the iteration, 
then 4 = ~usech(~cz), with bo from equation (2.10), and 6 = ( 2 / c ) d m .  
This leads to an initial value of 0 given by 

(223) 
@(U) = S i n h ( K Z )  

J1+ (Plb4:) -h2(Kz)  

From (2.20) 

dO & 2 4 ( 1 +  0')(b&- PO2) 
dz 
-=  

3( b R  - PO2) + (1 + 02) 

so 

24. (22) Pad6 approximarion 
If we seek more accurate approximations to the travelling waves, we have to find a 
fourth-order accurate form for A(  D ) ,  which will still allow us to solve the resulting 
ODE. The simplest way to do this is to use a (2,2) Pad6 approximation for A(D), so 
we still get a second-order differential equation. 

2 1  1 1 I + & D ~  
4sinh - D  - I + -D2 + -DO4 - 

2 12 360 I - &DZ'\ 

Then, $ 4  = A( D )  V'( 4 )  becomes 

c2[1- & D 2 ] 4 ( z )  = [ I  + &D2]V'(4(~)) .  (227) 

This leads to equations very similar to those obtained in the (2,O) Pad6 method, and 
the same tools are sufficient to solve them. We multiply by [2c2 + 3 V " ( + ( z ) ) ] @ ( z )  
and integrate 

E = ' [ 2 c Z + 3 V " ( 4 ( ~ ) ) ] ~ 4 ' ( ~ ) ~ - 3 0 W  2 (2.28) 

w = 2c44(z)2 -c 6c24(z)vy4(z)) - ioc2v(4(z)) - 3 ~ ' ( 4 ( ~ ) ) 2 .  (229) 

Again for a solitary wave, when 4 = @ q5' = 0, V = 0 and V' = 0, so E = 0. 
Hence the speed-height relationship is given by E = O,+' = 0,4 # 0 + W = 0 
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In the case of cubic and quartic potentials this relation can be inverted and 4u found 
as a function of c 

For a cubic potential 

$,,=$-(4c2-9+c 7) 5(14c2-9) . 

For a quartic potential 

(2.31) 

(2.32) 

For the lbda potential 

c2 = - kab+,,e-b+o f 2ab& -Sa f 5ae-% t a.\/S(Se-2bQ0 - 10e-**o 
2b& 

-2b4,e-b+0 f 5 - 464, t 2b2& + 6b4e-2b40 + 3b247~e-2b4~ 112 . ) I  
(2.33) 

An expression for the waveform is again complicated, but possible to find in terms 
of an implicit equation. From (228), we obtain the relation 

(2.34) 

which can then be integrated. The tricks used to perform this are identical to those 
used earlier, in deriving the (2,O) Pad& approximation; and so Will be omitted here. 
The end results are: 

24.1. Cubic potential: V(q5) = i+2 + ;a$'. Integrating (2.34) 

lb solve these equations for a fixed z, we fmt note that (2.35) can be rearranged 
to give 

and to start the iteration process, we can use (0,2) Pad6 approximation as before, Le. 
6 = 6,, sech2( xz); with +,, supplied by the speed-height relation generated by this 
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method (2.31), and IC = ( l / c ) d m .  This leads to an initial value of 0 given 
bY 

(238) 
sinh( nz)  e(" = 

d1 t (P /a40)  cosh2(nz) 

Once the iteration has converged 4( z )  can easily be found from 0 and d+/dz 
after differentiating (2.35) with respect to z 

then 

2.4.2. Quartic potential: V ( + )  = $$' t i b 4 4 .  We follow the same procedure as 
above 

2c2 log ( 1-0- ) (2.41) 
+ 2 J i 3 z  = 3 J ? t a n - ' ~ -  

2* l t@- 

The equation to be solved is then 

An initial value for the iteration is 

which is generated from 4 = 4,sech K Z ,  K = ( 2 / c ) d m ,  and 4" from (2.32). 
The linal result we need is 

(2.45) 
d+ - 6 d @ ( b d $ j  t P ) d G  
dz 
-- 

d 5 d m [ 9 ( b $ i  - POz) t (2c2 t 3)(1 t 02)]' 
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25. GIobal approximalion of the operator in Fourier ."pace 

We can state the lattice soliton problem in Fourier space as 

In aiming to produce a good approximation to the solitary wave, the initial objective 
is to find a good approximation of the operator A(k) which still allows the equations 
to be solved. The continuum approximations already mnsidered achieve this by a 
Thylor expansion about k = 0. This gives good approximations provided the final 
solution has a small high frequency component. However, large fast solitary waves 
become quite narrow (2 or 3 lattice spacings wide) and so do contain a considerabley 
high frequency component Hence to obtain good approximations to these solitary 
waves, we need an approximation to A(k) which is uniformly valid for all k. 

We also note, from considering the (0,2) Pad6 approximation, that, approximations 
of the form 

(2.47) 

lead to equations which are easily soluble, and enable us to wite the final solution 
as 4 = +(I). We shall consider approximations of the above form, and attempt find 
a,p giving a good global fit to &k). 

Five different expressions have been considered, to find equations relating a and 
p :  minimising the L', L2,  Lm norms of the difference, A ( k )  - X(k); forcing equality 
at k = 0, or forcing equality in an averaged sense as X -+ CO. Minimising the L' and 
Lm norms is not simple, but can be attempted numerically, or heuristically (as we 
have done for the Lm case). Of all the possible combinations left, forcing equality at 
k = 0 together with minimising the L2 norm of the difference gives the best results. 
'Ib minimise the L2 norm, we follow an Euler-Lagrange formulation and expand 
around the minimum A,, where A( k) = io( k) + E (  k) 

m 

I ( A )  = I(&,) + 1 c ( k ) [ A ( k )  - X(k)]dk + O(ll E 11'). (2.48) 
0 

By making ~ ( k )  sufficiently small, and of one sp on [O,co) ,  we find a condition 
for the minimum to be attained. Now, 
S,"fi(k)dk = T, and S,"i(k)dk = ~ / 2 m .  Hence a p  = i. Making 
I(k) = A ( k )  at k = 0 produces a = 1; so p = :. 

Solving the resultant equations to find +(I), we find for the cubic and quartic 
potentials respectively 

This is so A(k)dk = s ,  i(k)dk. 
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26. Results of numerical tats 
Numerical tesw have been carried out using a fourth-order symplectic Hamiltonian 
scheme [ll]. The scheme has been extensively tested and found to be useful tool 
for investigating large system of ODES [12]. The Hamiltonian itself is not exactly 
conserved as one of these, but is 'almost conserved'. It oscillates around its initial 
value with a small, non-increasing amplitude. The scheme is more efficient than an 
equivalent Runge-Kutta scheme since it requires fewer evaluations of the potential 
energy gradient. Over extended periods it is much more accurate, since it does not 
suffer from in-built damping, as Runge-Kutta schemes do. 

The accuracy percentage quoted in the following tables is calculated by inserting 
the predicted waveform into the integrator described above, and integrating forward 
in time until the solitary wave has separated from radiation. The energy in the soliton 
is then measured again and divided by the total energy in the system. This gives the 
proportion of the initial condition which actually forms a soliton nbles have been 
compiled with dt = O.Ol,(a,b) = (2,0),(0,2). The energy is measured in the seven 
points centred around the point with maximal dispacement. Some of the energy in 
very wide solitary waves will be neglected, this accounts for some of the inaccuracy 
at low speeds. 

V "nrerpeed 
1 . 5  2 1  1.1 

mare t ?he figure show height versus speed for the lbda patentid. The M ~ ~ O W  

tine represents the a c t  solution; the thick line the slandard mnlinuum/(O,Z) Pad6 the 
dashed tine is the Full mntinuum and the dotted tine lhe (2,Z) Pad6 approximation. 

Note, also the graph showing how each of the various methods compares when 
used to predict the speed-height characteristics for the lbda potential. 

26.1. Cubic potential. Results for this potential are shown in table 1. Where no 
percentage is shown the initial condition degenerated before a soliton could separate 
from radiation (small amplitude linear waves). The degeneration is due to the error in 
the initial conditions being large enough to push some lattice nodes over the potential 
bamer at # = -l/a. These nodes have then escaped from the potential well, and 
the system is doomed. 

The (0,2) Pad6 approximation will not produce a wave at speed c = 2.0 due to 
the errors being too large. The ( 2 4  Pad6 approximation can produce waves up to 
c = 2.8 without the errors becoming catastrophic. 
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lhbk 1. Results for numerical tests with a Nbic potenlial. See lex1 for details 

Wave speed c 
1.1 1.3 1.5 1.9 2.5 

Standard mntinuum 99.3% 93% 81% NIA NIA 
H = 0.051 H = 0.380 H = 1.177 

(50) Pad6 mntinuum 99.89% 99.7% 99.6% 99.5% 99.4 
H = 0.060 H = 0.630 H = 2.44 H = 15.4 H = 101 

(0,Z) Pad6 mntinuum 99.87% 99.20% 98.4% 97.0% NIA 

(2,2) Pad6 continuum 99.97% 99.993% 99.98% 9.94% 99.89% 

H = 0.055 H = 0.526 H = 1.894 H = 11.13 

H = 0.058 H = 0.&32 H = 2.332 H = 14.86 H = 99.4 

Global ammimation 95.7% 95% %.3% 97.5% 98.1% .. 
to Faurier operator H = 0.095 H = 0.919 H = 3.41 H = 20.6 H = U3 

26.2 Quartic pofentiaf. With a quartic potential, there is no problem with nodes 
escaping over a potential barrier and all methods can be considered at any speed. 
Fbr the case c = 100, dt was reduced to 0.001. 

W k  2 Results ot numerical tests with a quartic potential. See text for details. 

Wave speed c 
1.1 1.5 2.5 4.0 100.0 

(2,O) Pad6 mntinuum 99.7% 
H = 0.410 

Standard mntinuum 97.7% 
H = 0.308 

(0,Z) Pad6 mntinuum 99.1% 
H = 0.343 

(2,2) Pad& continuum 99.98% 

Global apprmimation 93.5% 
to the Fourier operator 

H = 0.390 

H = 0.598 

97.8% 
H = 3.32 
52% 
H = 1.484 

88% 
H = 1.924 

99.6% 
H = 2.90 

97.0% 
H = 3.49 

95.8% 
H = 38.0 

28% 
H = 16.4 

78.5% 
H = 18.9 

98.7% 
H = 31.0 

98.4% 
H = 31.7 

95.3% 
H = 276 

32% 
H = l 2 0  

76% 
H = 134 

98.2% 
H=724 

98.4% 
H = 217 

91.8% 
H = 1.3e + 8 

33% 
H = 1.7e -t 7 

74% 
H = 5.5e + 7 

97.9% 
H = 9.3e + 7 

98.3% 
H = 8.7e+7 

For speeds above 2.5 the method based on a global approximation to the operator 
in Fourier space is seen to out-perform the (2,2) Pad6 approximation. The former 
approximation also gives the waveform explicitly, so is much more useful at these 
higher speeds. However, it is not so accurate at lower speeds, and the (2,2) Pad6 
approximation is much more of a uniform approximation for the shape and size of 
solitary waves. 

3. The Kadomtsev-Petviashvili lattice 

The second equation we consider is the discrete Kadomtsev-Pehiashvili equation 
as derived in [SI 
e.. r, =e. , + L j  - Z"i,j + %1,j + 'Y"i,j+, - 2vi,j + "i,j-,) 

( 3 4  2 2  - ( ~ ; + ~ , j  + $,j + 
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b( z ) ,  transforms this to The travelling wave ansatz, vi , j  = 4( i cos 0 + j sin B - ct) 

cZ4"( .) = 4( z t COS e) - 24( .) t 4( z - COS e )  
- ~ ~ 2 [ ~ z ( ~ t ~ ~ ~ ) - 2 ~ z ( ~ ) + ~ z ( ~ - c o s e ) ]  

t +$(. t sine) - w ( ~ )  + +(z - sine)]. (3.2) 

The most obvious way to group the terms is in 4 and bZ on opposite sides of the 
equation, to obtain 

[czDz- 4sinh2(~Dcose)  -k2sinhZ($DsinB)]+(r) 

= [ - 4 a ~ z s i n h 2 ( ~ D c o s ~ ) ] ~ z ( ~ ) .  

We then define the operator so that A( D)+(z) = 4(.~)~.  Results such as 

,40,  = ; ( cz -cosze - 

Ib"l = ; ( cz - cosz e - 

a$ cosz -9 

ae2 cosz 0 

(3.3) 

(3.4) 

are easily obtained for the (0,2) and (2,O) Pad6 approximations (respectively). 
Numerics show that these are reasonable results, but that better can be achieved 
with a little more thought (In the results table, these approximations are described 
as being from the first approach.) 

In the second, more accurate approach, rather than group the functions 4 and 
42, we are concern ourselves more with the direction that the differences are taken 
in. There is a nonlinear potential acting in one direction, and not in the other, so we 
attempt to keep the effects of differences in the i and j directions separate. Defining 
V'( 4)  = 4 - aeZ4Z, we see that equation (3.2) can be written as 

czD24( Z )  = [4sinhz( i D  cos e) ]V' (+(z ) )  i- e2[4sinhz( i D s i n  e)]+( z ) .  (3.5) 

This can be rearranged to the form 

It is possible to expand all terms as a power series in D, we divide out the common 
factor of Dz as usual. 'lb enable us to see through the complexities of the calculation 
we will use the simplifying notation a = cosze,p = sinze,y = cZ-eZsinZe, to write 
the operator as 

(3.7) 
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3.1. (40) Pad6 approhation 

For the (2,O) Pad6 approximation, we expand A( D) to O( LIZ) in a 'bylor series 

% P + Q D Z .  (3.9) 

The differential equation is then (after an integration) 

+V'(+) - V ( + )  = ;PV'(+)'+ R+"Vf'(d)z- E .  (3.10) 

For a solitay wave, +,+I -+ 0, and so E = 0. The height of the solitay wave is then 
independent of Q; and substituting for P gives 

def Substituting now for a,?, v; and putting T = y / a  = (cZ - ~ ~ s i n ~ 8 ) s e c ~  8 

(3.11) 

(3.12) 

3.2. (0,Z) Pad6 approximation 

In this approximation, the differential operator acts on +, and not on the nonlinear 
function, V'(+). Using the same notation (a,p,r, P, Q)  in the previous subsection 

(3.13) 

then P+ - &+I' = PzV'(+) can be integrated to 

* 5 P+' - 'QQZ 2 = PzV(+)  - E. (3.14) 

For a soliton solution, +, 4' - 0 in the large z limit, so E = 0. For the speed-height 
curve, we set +'(O) = 0, to find 4; = 2PV(+,) .  Substituting back, we find that 

(3.15) 
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3.3. (22) Pad6 approximation for the KP lallice 

We expand (3.7) to O( D4) ,  write A( D) as 

(3.16) 

Equating coefficients io the corresponding expansions gives 

(3.18) 

We solve the differential equation, [y + SOz]$ = [a + RD2]V'(rp) to obtain 

+RV'(4dt  - 7W4UVf(4") - V ( 4 , ) )  - cYSV(4u) t 5rs4  = 0 (3.19) 

as a speed-height relation. This is not a function of R, S, a, y independently, but 
only the ratios, U = R / S ,  T % r/a (T as defined earlier). After some manipulation 
we arrive at the quadratic 

O =  U ( a e 2 4 , ) 2 + ( ~ - 2 U + ~ T U ) ( a E Z 4 U ) + ( T + U - ~ - T U ) .  (3.20) 

The solution is then 

der 

3.4. CompariFon of results 

'Ihble 3 shows the percentage errors in the speed-height curves when the height of 
the exact solution (calculated numerically by a spectral method) reached N 1600, with 
parameters E = 0.1, a = 0.25. All methods converge to the exact solution as height 
-* 0. 

lhble 3. Percentage e m m  in the speed-height CUIV~S. See Len for details. 

Angle 8 

x/lO x / 5  3rr/lO 

(20) Padt-first approach i6 .20% i6.0036 +4.80% 
(20) P a d t e c o n d  approach -3.90% -3.90% -3.W% 
(22) P a d e t h e r  approach -1.21% -1.20% -1.17% 
AwmDtotic aoansion in 181 -1.03% -0.88% -0.43% 

Note the (0,2) Pad6 approximation gives the same results as the (2,O) PadLfirst 
approach. Use of the asymptotic result derived in [8] still requires the solution of a 
nonlinear differential delay equation, which has to be carried out numerically. 
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4 Discussion and conclusions 

We have used various continuum approximations to model solitary waves in a discrete 
system-a lattice with various forms of non-harmonic interaction. In all cases the 
(2,2) Pad6 method is seen to be more accurate than any other. The accuracy at 
high speeds shows a significant improvement on other methods, allowing much faster 
solitary waves to be initiated in the cubic potential than was previously possible. A 
speed-height relationship is very simple to find in all cases, however the complete 
waveform sometimes is non-trivial. 

The method of testing accuracy that has been used here measures how the initial 
wave form adapts to the grid. It does not compare the predicted speed with the 
actual speed of propagation in the lattice. However this can be done, and the fit is 
found to be reasonably good. In the case of a lattice with quartic interaction potential 
and the initial conditions given by the (z2) Pad6 approximation at speed c = 2.0, 
the actual speed of the wave generated is c E 2.07, an error of -4%. Hence we can 
conclude that the speed of the wave generated is very close to the predicted value. 

Of the three methods which give an explicit waveform, the (0,2) Pad6 method 
gives the best results, but even its accuracy tails off for larger speeds (c > 1.5). 
Its relative accuracy is due to the fact that it relies on fewer approximations than 
the other two methods. The standard continuum method uses the approximation 
dzV'(4(z))/dzz dz+/dzz. This is Seen to be valid only in a very small region 
above c = 1, (C 5 1.3). 

The method based on a global approximation to the operator in Fourier space 
works just as well for the two-dimensional lattice as for one. The integrals can still 
be calculated analytically. For the KP lattice, the integrals are not solvable explicitly, 
although they are well defined. A numerical calculation can be carried out, or they 
can be calculatcd by asymptotic methods. An expansion of the discrete W operator 
in Fourier space assuming E to be small can lead to an infinite power series in E with 
coefficients given by calculable integrals. The details of these results are left to the 
reader. 

In summary we see that it is possible to derive analytic results with much greater 
accuracy than those obtained by the straightfolward continuum approximation. 
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